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Computing in Permutation and Matrix Groups 
I: Normal Closure, Commutator Subgroups, Series* 

By Gregory Butler and John J. Cannon 

Abstract. This paper is the first in a series which discusses computation in permutation and 
matrix groups of very large order. The fundamental concepts are defined, and some algo- 
rithms which perform elementary operations are presented. Algorithms to compute normal 
closures, commutator subgroups, derived series, lower central series, and upper central series 
are presented. 

1. Introduction. Our aim in this paper is to present efficient methods for comput- 
ing the derived and lower central series of a group G of permutations or matrices 
over a finite field. The methods combine the original algorithms of Cannon [3], 
which are independent of the group representation, with the techniques of Sims [7], 
[8] and Butler [1] for computing in permutation and matrix groups. The resultant 
algorithms have been implemented as part of the group theory system CAYLEY [4]. 
Our experience with these implementations suggests that the algorithms are applica- 
ble to groups to very large order-at least 1016 -and to permutation groups of 
degree up to 1000 in some instances. For the algorithms to be applicable to a matrix 
group, the group must be almost faithful on a small orbit (or union of orbits) of the 
one-dimensional subspaces. That is, the kernel of the transitive constituent homo- 
morphism should be very small, and the length of the orbit should be less than 1000 
or so. 

We begin in Section 2 by reviewing the general algorithms for computing normal 
closures, commutator subgroups, the derived and lower central series. A new 
algorithm to compute the upper central series is presented in Section 3. The critical 
operations of these algorithms are testing whether an element g of G is in a subgroup 
H, replacing H by KH, g), and comparing the orders of two subgroups. These 
operations can be efficiently performed in permutation and matrix groups using the 
concepts presented in Section 4 and the algorithms presented in Sections 5 and 6. 
We conclude in Section 7 with some examples of our experience with the implemen- 
tations in CAYLEY. 

The notation used is: 

identity identity element of a group 
x9 the image of x under g 
hg g-lhg 

[g,h] g-1h -gh 
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[G, H] the group generated by [g, h] for all g E G, h E H. 
Kg1,I. I gm ) the group generated by g g,. 

a E- b a is assigned the value b 

2. Normal Closure, Commutator Subgroup, Derived and Lower Central Series. Let 
H be a subgroup of a group G. The normal closure nclG(H) of H in G is the smallest 
normal subgroup of G which contains H. Therefore nclG(H) = (HgI g E G). 
Given a set of generators of H and a set of generators of G, we compute the normal 
closure by extending H by sufficient conjugates of the generators of H so that the 
resultant subgroup is normal in G. More precisely, suppose that G Kgl,... g,m) 
and H= KhI,...,h1), then nclG(H) is computed as follows: 

ALGORITHM NCL 
NCL1: [initialize] 

K E- H, k -1, i O- 0. 
NCL2: [choose next generator of K to conjugate] 

i*-i+ 1. 
if i > k then nclG(H) E- K and stop. 
j -O. 

NCL3: [test if h0' is in K for eachj] 
j+ 1. 

if j > m then go to (2). 
g -- h'g. 
if g E K then go to (3). 

NCL4: [conjugate of hi is not in K so extend K] 
k <-k + 1, hk *-g, K <KK, hk). 
go to (3). 

When H1 = Kal,...,am) and H2= Kbl,...,bl) are normal subgroups of G, the 
commutator subgroup [HI, H2] is the normal closure in G of H = K[a , bj] I i = 
1, ... ,m,j =1,... ,l. We can test whether [ai, bj] is in the group generated by the 
previous commutators. If it is, then we discard it from the generating set of H. If it is 
not, then we extend the group generated by the previous commutators. Once H is 
computed, the commutator subgroup [HI, H2] is computed by Algorithm NCL. 

As the derived and lower central series can be defined in terms of commutator 
subgroups, the method of their computation is now straightforward. The termination 
of the series can be decided by the comparison of the orders of two subgroups-the 
last term in the series and the subgroup which is potentially the next term in the 
series. 

3. Upper Central Series. The upper central series of a group G is the sequence 
{identity} = Go G' < G2 , _.. of subgroups where G', i ? 1, is the inverse 
image (under the canonical homomorphism) in G of Z(G/G'-'). Suppose G= 

g 1,... I gm> and that {r,.. . , r1} is a set of representatives of the conjugacy classes of 
elements of G. Then G' = KG''-, {rj I [rj, gk] E G'' for all k}) for i > 1. Given a 
set of class representatives, the following algorithm uses this characterization of G' 
to compute the upper central series of G. 
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ALGORITHM UCS 
UCS1: [initialize] 

i 0, H {- {identity}, G? <- {identity}. 
UCS2: [begin the next subgroup in the series] 

i*-i+ 1, j1-O. 

UCS3: [is rj a generator of the next subgroup] 

ji-j+ 1. 
if j > / then go to (6). 
if rj E H then go to (3). 
k -0. 

UCS4: [test [rj, gkI E G'-1 for all k] 
k-k+ 1. 
if k > m then go to (5). 

9 < [rj, gk]' 
if g M G'- l then go to (3). 
go to (4). 

UCS5: [Gi-l?H<GI] 
H <KH, ri). 
go to (3). 

UCS6: [next subgroup is complete] 
if IHI=I G'-1 then stop. 
G- H. 
if 1G I = I G I then stop else go to (2). 

The computation of conjugacy classes of elements is with present techniques 
restricted to groups of order less than 104, so the range of application of Algorithm 
UCS is quite restricted. 

4. Concepts. Let G be a group acting faithfully on the finite set X. For a group of 
permutations of S2 we take X = Q, and for a group of matrices acting on the vector 
space V over a finite field we take X = V U W, where W is the set of all 
one-dimensional subspaces of V. 

Suppose a subset S { (s,,... *sm} of G is given and let H = (S). For x E X, the 
orbit xH of x under H is the set of images xg as g runs over H. The stabilizer Hx of x 
in H is the set of elements of H which fix x. For y E xH, choose an element u(y) of 
H which maps x to y. Then U = {u(y) I y E xH} is a set of right coset representa- 
tives for Hx in H. A Schreier vector for xH is a map v: xH \ {x} -- S such that, for 
each y E XH \ {x}, there is a unique sequence [yj.... ,Yr] with y, E XH \ {x}, Yr = y, 

and such that v(yl)v(y2) ... v(yr) maps x to y. The map w: xH \ {x} -* xH, where 
w(y) = yV(Y)I is called a vector of backward pointers. The Schreier vectors and the 
vectors of backward pointers offer a space-efficient method of storing U, and are 
implemented as maps v: X-4 {-1,0, 1,2,...,m} for permutation groups, v: XH 

{-1, 1, 2,... .,m} for matrix groups, and w: {1, 2,. ..,I xH I} {0, 1, 2,. . .,I xH I} for 
matrix and permutation groups. In the implementation of the vector w there is an 
implicit order on the orbit xH. This order is given by the order in which the members 
of the orbit are generated. See Algorithm ORB of Section 5 for more details. 
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A sequence B x[x ,... ,Xk] of elements of X is a base for H if no nonidentity 
element of H fixes B pointwise. For i = 1, 2,..., k + 1, let H(i) = Hx.I X2I-X- 

_Thus 
H = H(') > H(2) . > H(1l = {identity}. For i =1,2,... ,k, let H\, = ,and 
let U, be a set of right coset representatives for H('+ 1) in H(i). We call A\, and U, the 
ith basic orbit and ith basic transversal, respectively. Each element g of H is uniquely 
expressible as a product uk ... u1 with ui E U;, for all i. Hence IH= H 

nI'= I I Ui I 

A set of elements of H is a strong generating set of H relative to B if, for 
= 1, 2,... k, S n H(i)-which we will call S(i)-is a generating set of H(i). If a base 

and strong generating set of H are known, then Algorithm ORB of Section 5 can be 
used to compute lAi and Ui, for each i. The characterization of the elements of H as 
products uk ... u1 means that H can be described quite compactly by a base B, a 
strong generating set S, and a Schreier vector vi and a vector w, of backward pointers 
of each orbit LAi, i = 1, 2,. . ., k. Another advantage of knowing a base for a group is 
that relations amongst elements of the group need only be verified on the base 
points. This is used in Algorithms INSV and XSM to improve efficiency. 

5. Fundamental Algorithms. For completeness we present two fundamental algo- 
rithms. Both are well known. See, for example, [6], [7]. 

Given a set S = s,... , sm } of generators of H, the following algorithm computes 
the orbit Y of x, a Schreier vector v, the vector w of backward pointers, and a set 
U = {u(y) I y E Y} of right coset representatives for Hx in H. Basically the algo- 
rithm adds the image ySt of a point y of Y under a generator st until Y is closed under 
the action of H. 

ALGORITHM ORB 

ORB 1: [initialize] 
r -Iyr x,j 0. 
v(x) *- -1, w(x) *- 0, u(x) *- identity. 

ORB2: [choose jth element of orbit to act on] 
>-j+ 1. 
if]> r then Y *- {Yl---'Yr} and stop. 
t *-0, y <-YJ. 

ORB3: [choose tth generator to act by] 
tt+ 1. 
if t > m then go to (2). 

ORB4: [act onjth element by tth generator] 
z *-ySt. 

if z is in yl. . . jYr} then go to (3). 
r <- r + 1, Yr Z, v(z) -- t, w(z) -j, u(z) -- u(y)st. 
go to (3). 

For the purposes of Algorithm XSM we require a variation of this algorithm 
which, given an orbit Y, a Schreier vector v, and a vector w of backward pointers 
relative to the group (s1, 52,. , Sm), extends Y, v and w so they correspond to the 
extended group (s, S21... 5m, Sm+?). The necessary changes to Algorithm ORB are 
straightforward. 
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The next algorithm performs the first of the critical operations for computing 
series. It determines whether an element g of G is in H by attempting to express g as 
a product uk ... ul of coset representatives. It assumes that a description of H (by a 
base, etc., as at the end of Section 4) is known and that a base C for G is known. 

ALGORITHM INSV 
INSV1: [initialize] 

i O,D - BgE Cg. 
INSV2: [D = [dl,.. . ,dd]. Next level of base] 

i*-i+ 1., 
if di is not in Av, then g is not in H. 

INSV3: [determine u, from Schreier vector. Act on D, E by u, 
j -- vi(dl). 
if j = -1 then go to (4). 
D -- DSj', F -- E S}. 

go to (3). 
INSV4: if i < k then go to (2). 

g is in H if and only if E = C. 

The frequent use of the inverses of the strong generators in Algorithm INSV is the 
reason the inverses are also stored. In the language of Sims and Leon, S is assumed 
to be closed under inverses. 

6. The Extending Schreier Method. In 1967 Sims [7] developed the Schreier 
method to compute a base and strong generating set of a permutation group. It is 
founded on Schreier's lemma which states that, since U = {u(y) I y E xG} is a set of 
coset representatives for Hx in H, the set {u(y)su(ys)- I 

I y E xH, s E generating set 
of H) of Schreier generators generate Hx. The Schreier method was generalized to 
matrix groups in Butler [1] and variations employing coset enumeration have also 
been developed (Sims [10], [11], Leon [6], Butler [2]). Here we present a version 
particularly applicable to the algorithms of Sections 2 and 3. Since the details are 
important to the efficiency of the Schreier method, we will be quite explicit. It is 
perhaps useful for the reader to first become familiar with the description of the 
Schreier method in [1]. 

The algorithm assumes that a base C for G is known, and that a base B 
[x. ... ,Xk] and a strong generating set S = {s,. .. . sm) of H are known. It is further 
assumed that every element in B is also in C and that S is closed under inverses. For 
i = 1, 2,.. ., k, the Schreier vector vi and the vector wi of backward pointers of H(') 
are known, thus enabling the coset representatives u,(y) for H('+l 1) in H(') to be 
expressed as words in the elements of S, and enabling the "stripping" procedure of 
step XSM4 to be performed as in Algorithm INSV. By representing an element as a 
word and operating on the base instead of the whole of X, we produce the bulk of 
the gains of Algorithm XSM over the Schreier method. The remainder comes by 
avoiding the repeated consideration of the same Schreier generator each time a level 
is revisited. This is achieved through the use of Fi which stores those points y for 
which it is known that u,(y)su,(ys)-' is in KS('+l') for all generators s of S(') 
except possibly the last. We let gen[i] = {j SJ E s (i)}, and we denote the jth 
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element of gen[i] by gen[i, j]. The set Y consists of those elements of li whose 
corresponding Schreier generators have been or are being processed during the 
current visit to level i. 

The algorithm extends the base and strong generating set of H to a base and 
strong generating set of KH, g), where g E G \H. Algorithm XSM also computes 
the order of the subgroup thus performing the second and third operations which are 
critical to the efficiency and range of applicability of the algorithms of Sections 2 
and 3. 

ALGORITHM XSM 

XSM 1: [initialize] 
fori= 1,2,...,k 

F,<- A j, Y,< 0 , gen[i {i j IS; E SMi} 

h E- g, i O- 0. 
let 1 < k + 1 be the greatest integer such that 

[X,... .Xl-.]h= [XI,.**,X1-1]- 

if 1 < k then go to (7). 
go to (6). 

XSM2: [next coset representative. Act only by last generator if yi E Ij] 
if Y = Ai then go to (10). 
choose yi E Ai \ Y. 

, <- Y U {Yll} 
if yi E FT thenri - gen[i] -1 elseri -0. 

XSM3: [next generator of S(') for Schreier generator] 
r-- r + 1. 

if ri > I gen[i] then go to (2). 
form h = Ui(Yi)Sgen[i,r,I as a word. 
D *- Ch, / ( i- 1. 

XSM4: ["strip" h to test if Schreier generator is redundant] 
l-1l+ 1. 

if 1 > k then go to (5). 

y X. 

if y M lv then go to (7). 
h <- hul(y)-' as a word, D -- Dul(y)'. 

go to (4). 
XSM5: if D = C then go to (3). 
XSM6: [h fixes B so extend base] 

k -k + 1, choose xk E C\B moved by h. 
XSM7: [new strong generator] 

m m + 1, Sm E-h (evaluated as an element), S S U {Sm, sm- }. 

XSM8: [Sm belongs to S('?1),* ....SM 

i*-i+ 1. 

if i > 1 then go to (9). 
>-- 0, gen[i, I gen[i] + 1] -m. 

extend Avi, vi, w,. 
go to (8). 
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XSM9: [continue at level 1] 
i 1, go to (2). 

XSM1O: [know a base and strong generating set for KS()>)] 

h-i-i. 

if i 0 then stop. 
if Y = 0 then go to (2) else go to (3). 

Two remarks concerning Algorithm XSM are in order. Firstly, the extending 
generator g is usually "stripped" as in step XSM4, although this is not necessary for 
the correctness of the algorithm. Secondly, there is a theoretical reason for extending 
the orbits and Schreier vectors in step XSM8. The proof of Schreier's lemma 
assumes that for a fixed set of coset representatives each of the Schreier generators is 
considered. As we wish to avoid reconsidering those Schreier generators previously 
examined, we require that the set of coset representatives be extended rather than 
recomputed upon construction of a new strong generator. 

For permutation groups with short base C the algorithm is very fast. For example, 
each application of Algorithm XSM in Section 7 (1) took an average 1.4 seconds on 
a CDC Cyber 170/730, and it has been used successfully on groups of degree 2000 
with bases of length 3 to 10. For matrix groups where dim V is small, the length of 
the base is usually larger than dim V, and it is more efficient not to represent 
elements as words and not act on just the base. Each application of Algorithm XSM 
in Section 7 (2) took an average of 20 seconds on a CDC Cyber 170/730. 

7. Conclusion. We consider some applications of the methods. All times are for a 
CDC Cyber 170/730. 

(1) The Fibonacci group F(2,9) has a homomorph of order 23 - 518 19 with a 
faithful permutation representation of degree 190 (Havas, Richardson and Stirling 
[5]) with a base of length 19. It took 91 seconds to compute the three distinct terms 
of the lower central series. They have order 2 3 518 - 19, 2 - 518, and 518. Algorithm 
XSM was applied 55 times. 

(2) The group G = Ka, b, c) of 7 X 7 matrices over GF (5) (Sims [9]) has order 
25 3 - 56. It took 102 seconds to compute the derived subgroup of order 23 - 3 . 56. 
Algorithm XSM was applied 5 times. 

(3) A Sylow 2-subgroup G of GL(5, 2) has order 210. Regarded as a group of 5 X 5 
matrices over GF(2), the computation of the upper central series took 41 seconds. 
The terms have order 1, 2, 23, 26 and 210. The 10 applications of Algorithm XSM 
took 5 seconds. Regarded as a permutation group of degree 31 with a base of length 
5, the times were 5 seconds and 2 seconds, respectively. In both cases the computa- 
tion of the lower central series required approximately one-third of the time. 

In conclusion it is clear that the combination of the algorithms for groups with an 
arbitrary representation and the powerful techniques for permutation and matrix 
groups has greatly increased the range of applicability of the algorithms. The extent 
of their applicability is indicated by the above examples. 
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